Computational methods for nonlinear elliptic eigenvalue problems
نویسندگان
چکیده
منابع مشابه
Variational Methods for Nonlinear Elliptic Eigenvalue Problems
In the present note, we give a simple general proof for the existence of solutions of the following two types of variational problems: PROBLEM A. To minimize fa F(x> u, • • • , Du)dx over a subspace VofW>*(tt). PROBLEM B. TO minimize ƒ« F(x, w, • • • , Du)dx for u in V with / a G(x, u, • • • , D^u)dx^c. The solution of the first problem yields a weak solution of a corresponding elliptic boundar...
متن کاملOrlicz Spaces and Nonlinear Elliptic Eigenvalue Problems
Nonlinear elliptic differential equations of order m acting in a space of m dimensions often occupy a special position in more general theories. In this paper we shall study one aspect of this situation. The nonlinear problem under consideration will be the variational approach to eigenvalue problems for nonlinear elliptic partial differential equations as developed by the author in [l], [2], [...
متن کاملKrylov Methods for Nonlinear Eigenvalue Problems
We present two generalisations of the Krylov subspace method, Arnoldi for the purpose of applying them to nite dimensional eigenvalue problems nonlinear in the eigenvalue parameter. The rst method is called nonlinear rational Krylov subspace and approximates and updates the projection of a linearised problem by nesting a one-sided secant method with Arnoldi. The second method, called nonlinear ...
متن کاملProjection Methods for Nonlinear Sparse Eigenvalue Problems
This paper surveys numerical methods for general sparse nonlinear eigenvalue problems with special emphasis on iterative projection methods like Jacobi–Davidson, Arnoldi or rational Krylov methods and the automated multi–level substructuring. We do not review the rich literature on polynomial eigenproblems which take advantage of a linearization of the problem.
متن کاملNonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods
We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1991
ISSN: 0898-1221
DOI: 10.1016/0898-1221(91)90047-8